© 2001 American Chemical Society, Org. Lett., Li ol000394z Supporting Info Page 174z

Supplementary information: Enantioselective Synthesis of *epi*-Gallocatechin-3-gallate (EGCG), the Active Polyphenol Component from Green Tea. Lianhai Li, Tak Hang Chan*, Department of Chemistry, McGill University, Montreal, Quebec, H3A 2K6 Canada

Experimental

General Procedures. Chemicals were used as obtained from commercial sources unless specified otherwise. CH₂Cl₂ was freshly distilled over CaH₂ and used immediately. THF was freshly distilled over Na/benzophenone and used immediately. Anhydrous DMF was obtained by distillation over CaH₂ under vacuum. Literature procedures were used for preparation of the following chemicals: Dess-Martin periodinane¹, methyl 3,4,5-tris(benzyloxy)benzoate², 3,4,5-tris(benzyloxy)benzoic acid³. The synthesis of naturally occurring (-)-EGCG is described in detail as a representative example. The procedure for the synthesis of racemic (*1R**, *2R**)-3-[2,4-bis-(benzyloxy)-6-hydroxyphenyl]-1-[3,4,5-tris(benzyloxy)phenyl]propane-1,2-diol (7c), which was used to prepare racemic EGCG, is also presented.

Preparation of Silica Gel Supported H₂SO₄ for the Friedel-Crafts Cinnamylation: Silica gel (30 g) was added to a mixture of H₂SO₄ (98%, 10 g) and hexane (100 mL); the mixture was shaken for 5 min, and the solvent was removed with an evaporator. The residue was left in the rotavac for 1 h at 30 °C, then hexane (100 mL) was added, and the mixture was shaken vigorously by hand for 5 min. The solvent was removed by rotary evaporation at 60 °C for 4 h. The resulting catalyst was kept sealed for future use.

3,4,5-Tris(benzyloxy)benzyl alcohol: LAH (1.50 g, 39 mmol) was added in 10 batches to a stirred solution of methyl 3,4,5-tris(benzyloxy)benzoate (18.4 g, 40 mmol) in THF (125 mL) at 0 °C under an Ar atmosphere. The mixture was stirred at rt for 2 h after the addition. Then hexane (125 mL) was added. This was followed by dropwise addition of a saturated solution of NH₄HF₂ (5 mL). The mixture was stirred at rt for 1 h and then filtered and washed with ethyl acetate. The filtrate was dried (Na₂SO₄) and evaporated to afford the desired alcohol (15.4 g, 89% yield) of sufficient purity for the next step. ¹H NMR (CDCl₃, 300 MHz) δ 7.52-7.25 (m, 15 H), 6.67 (s, 2 H), 5.11 (s, 4H), 5.06 (s, 2 H), 4.56 (s, 2H), 1.91 (br s, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ 153.2, 138.0, 137.8, 137.3, 137.0, 128.9, 128.8, 128.4, 128.1, 128.0, 127.7, 106.4, 75.5, 71.3, 65.6.

Ethyl (E)-3,4,5-tris(benzyloxy)cinnamate: At rt under an Ar atmosphere, PDC (6.8 g, 18.1 mmol) was added to a stirred mixture of 3,4,5-tris(benzyloxy)benzyl alcohol (15.4 g, 36.1 mmol) with 4 A molecular sieves (10 g) in CH₂Cl₂ (150 mL). The mixture was stirred at rt overnight, and Et₂O (150 mL) was added to quench the reaction. The mixture was filtered through a layer of silica gel, and the solid was thoroughly washed with Et₂O. The solvent was evaporated, and the residue was dried in high vacuum for 2 h to yield the aldehyde as white solid. The aldehyde thus obtained was dissolved in THF (120 mL), and to this solution triethyl phosphonoacetate (9.43 g, 42 mmol) was added. The mixture was cooled in an ice bath, and NaH (1.68 g, 60% dispersion in mineral oil, 42 mmol) was added to this solution in 10 batches. The reaction was allowed to proceed at rt for 2 h and then sat. NaHCO₃ solution was added. The organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The organic phases were combined, dried (Na₂SO₄), filtered and evaporated to afford a solid. This solid was washed with hexane

to remove the mineral oil and the excess of triethyl phosphonoacetate to yield the desired compound (16.3 g, 91% yield) in sufficient purity for the next step. ¹H NMR (CDCl₃, 400 MHz) δ 7.56 (d, J = 16.4 Hz, 1 H), 7.45-7.25 (m, 15 H), 6.83 (s, 2 H), 6.29 (d, J = 16.4 Hz, 1 H), 5.13 (s, 4H), 5.11 (s, 2 H), 5.26 (q, J = 7.6 Hz, 2H), 1.35 (t, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 167.2, 153.2, 144.7, 140.6, 137.8, 137.0, 130.2, 128.8, 128.6, 128.5, 128.3, 128.2, 127.7, 117.7, 107.9, 75.5, 71.4, 60.7, 14.6.

(*E*)-3,4,5-Tris(benzyloxy)cinnamyl alcohol (4c): To a solution of ethyl (*E*)-3,4,5-tris(benzyloxy)cinnamate (16.3 g, 33 mmol) in THF (125 mL) at -78 °C under an Ar atmosphere, DIBAL (48 mL, 1.5 M in toluene, 72 mmol) was added dropwise. The mixture was stirred at -78 °C for 1 h and then at rt for another 1 h. Then the mixture was cooled to 0 °C and poured into a stirred mixture of hexane (250 mL) and saturated aqueous Na₂SO₄ solution (5 mL). The resulting mixture was stirred until a large quantity of solid was formed. The mixture was filtered, and the solid was thoroughly washed with ethyl acetate. The organic solutions were combined and dried (Na₂SO₄). The residue after evaporation of the solvent was washed again with hexane, and the solid was collected to afford the desired product (14.2 g, 95% yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.45-7.25 (m, 15 H), 6.68 (s, 2 H), 6.48 (d, J = 16.4 Hz, 1 H), 6.18 (dt, J = 16.4, 5.2 Hz, 1 H), 5.11 (s, 4H), 5.06 (s, 2 H), 4.29 (d, J = 5.2 Hz, 2H), 1.6 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 153.2, 138.5, 137.3, 132.6, 131.2, 128.9, 128.8, 128.4, 128.2, 128.1, 128.0, 127.6, 106.4, 75.5, 71.4, 63.7.

[3,5-Bis(benzyloxy)-2-[3-[3,4,5-tris(benzyloxy)phenyl]allyl]phenoxy]-tert-butyl-dimethylsilane (18): At rt under an Ar atmosphere, 25% H₂SO₄/SiO₂ (160 mg, 0.4 mmol) was added in one batch to the stirred mixture of 3,5-bis(benzyloxy)phenol (306

mg, 1 mmol) and (E)-3,4,5-tris(benzyloxy)cinnamyl alcohol (452 mg, 1 mmol) in a solvent mixture of CH₂Cl₂ (2 mL) and CS₂ (2 mL). The resulting mixture was stirred at rt for 3 h and then filtered through a layer of silica gel. The solvent was evaporated, and the residue was purified by column chromatography on silica gel (5% EtOAc/C₆H₆) to afford (E)-3-[2,4-bis(benzyloxy)6-hydroxyphenyl]-1-[3,4,5-tris(benzyloxy)phenyl]propene (468 mg) which was not pure but was used as obtained in the next step. The alkene thus obtained was dissolved in dry DMF (5 mL), and to this solution imidazole (145 mg) and TBSCl (165 mg) were added successively. The resulting mixture was stirred at rt overnight, and then saturated Na₂CO₃ solution was added to quench the reaction. The mixture was extracted with EtOAc. The organic layers were combined, dried (Na₂SO₄), and evaporated. The residue was purified by flash chromatography on silica gel (benzene) to afford the desired compound (428 mg). The ¹H NMR and ¹³C NMR spectra showed that the compound was contaminated by some impurities (about 10% according to ¹H NMR), which were hard to be removed by flash chromatography. This material was used as obtained above without further purification for the next step. ¹H NMR (CDCl₃, 400 MHz) δ 7.45-7.25 (m, 25 H), 6.58 (s, 2 H), 6.32-6.10 (m, 4 H), 5.06 (s, 4H), 5.03 (s, 4 H), 5.01 (s, 2H), 3.49 (d, J = 4.4 Hz, 1 H), 1.00 (s, 9 H), 0.20 (s, 3H);¹³C NMR (CDCl₃, 100 MHz) δ 158.6, 156.4, 155.0, 153.0, 138.2, 137.7, 137.5, 137.3, 134.3, 129.6, 129.2, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.7, 127.6, 127.5, 112.2, 106.0, 98.7, 94.1, 75.5, 71.4, 71.2, 70.4, 70.3, 27.1, 26.1, -3.8. (+)-(1R,2R)-3-[2,4-Bis(benzyloxy)-6-hydroxyphenyl]-1-[3,4,5tris(benzyloxy)phenyl]propane-1,2-diol ((+)-7c): AD-mix- α (1.42 g) and methanesulfonamide (95 mg) were dissolved in a solvent mixture of t-BuOH (6 mL) and

H₂O (6 mL). The resulting mixture was stirred at rt for 5 min. Then the mixture was cooled to 0 °C and a solution of compound 18 (428 mg) in dichloromethane (6 mL) was added. After the mixture had been stirred overnight, a total of four batches of methanesulfonamide (48 mg each) and AD-mix-α (0.71 g each) were added in 24 h intervals. After another 24 h of stirring at 0 °C, TLC showed that the reaction was completed. Then a 10% Na₂S₂O₃ solution was added to guench the reaction. The mixture was filtered through a layer of Celite, and the filtrate was extracted with EtOAc. The organic layer was combined, dried (Na₂SO₄) and evaporated. The residue was redissolved in THF (3 mL), and TBAF (1 mL, 1 M in THF) was added. The resulting mixture was stirred at rt for 4 h, and then saturated sodium bicarbonate solution was added. The mixture was extracted with EtOAc, and the organic layers were combined, dried (Na₂SO₄) and evaporated. The residue was purified by flash chromatography on silica gel (10-25% EtOAc/benzene) to afford the desired compound (318 mg, 41% yield based on 4c) as a white solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.45-7.25 (m, 25 H), 6.59 (s, 2 H), 6.26 (d, J = 2.0 Hz, 1 H), 6.21 (d, J = 2.0 Hz, 1 H), 5.05-4.95 (m, 8H), 4.89 (s, 2 H), 4.43 (d, J = 5.6 Hz, 1 H), 3.92 (ddd, J = 8.4, 5.6, 3.6 Hz, 1 H), 2.90 (dd, J = 14.8, 3.6 Hz, 1 H), 3.92 (ddd, J = 8.4, 5.6, 3.6 Hz, 1 H), 2.90 (dd, J = 14.8, 3.6 Hz, 1 H), 3.92 (ddd, J = 8.4, 5.6, 3.6 Hz, 1 H), 2.90 (dd, J = 14.8, 3.6 Hz, 1 H), 3.92 (ddd, J = 8.4, 5.6, 3.6 Hz, 1 H), 2.90 (dd, J = 14.8, 3.6 Hz, 1 H), 3.92 (ddd, J = 8.4, 5.6, 3.6 Hz, 1 H), 2.90 (dd, J = 14.8, 3.6 Hz, 1 H), 3.92 (ddd, J = 8.4, 5.6,1 H), 2.75 (dd, J = 14.8, 8.4 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.3, 158.1. 157.5, 153.0, 138.3, 138.0, 137.1, 136.3, 128.9, 128.8, 128.7, 128.6, 128.4, 128.3, 128.1, 128.0, 127.9, 127.7, 126.8, 106.4, 106.2, 96.0, 93.7, 77.5, 77.1, 76.9, 75.3, 71.3, 70.0, 26.9; $[\alpha]_D = +11.54$ (c = 1.0, CHCl₃). By using the same procedure, (-)-(1S,2S)-3-[2,4bis(benzyloxy)-6-hydroxyphenyl]-1-[3,4,5-tris(benzyloxy)phenyl]propane-1,2-diol ((-)-7c) ($[\alpha]_D = -11.49$ (c = 1.0, CHCl₃)) was prepared with identical NMR spectra as the (+)-isomer.

(1R*,2R*)-3-[2,4-Bis(benzyloxy)-6-hydroxyphenyl]1-[3,4,5-

tris(benzyloxy)phenyl|propane-1,2-diol (7c): At rt and under an Ar atmosphere, 25% H₂SO₄/SiO₂ (160 mg, 0.4 mmol) was added in one batch to a stirred mixture of 3,5bis(benzyloxy)phenol⁴ (306 mg, 1 mmol) and (E)-3,4,5-tris(benzyloxy)cinnamyl alcohol (452 mg, 1 mmol) in a solvent mixture of CH₂Cl₂ (2mL) and CS₂ (2 mL). The resulting mixture was stirred at rt for 3 h and then filtered through a layer of silica gel. The solvent was evaporated, and the residue was purified by column chromatography on silica gel $(5\% \text{ EtOAc/C}_6\text{H}_6)$ to afford (E)-3-[2,4-bis(benzyloxy)-6-hydroxyphenyl]1-[3,4,5tris(benzyloxy)phenyl]propene (463 mg which was not pure but was used as obtained in the next step. The alkene thus obtained was dissolved in acetone (4.5 mL), and to this solution were added water (1.5 mL), NMO (130 mg, 50% in water) and OsO₄ (0.1 mL, as a suspension in 2-propanol which contained 10 mg of OsO₄ per mL, well-shaken before use). The resulting mixture was stirred at rt overnight, and then 10% Na₂S₂O₃ solution was added. The mixture was filtered through a layer of celite, and the filtrate was extracted with EtOAc. The organic layers were combined, dried (Na₂SO₄) and evaporated. The residue was purified by flash chromatography on silica gel (10-25% EtOAc/benzene) to afford the desired compound (340 mg, 50% yield) with identical NMR spectra as (+)-7c.

(-)-(2S,3R)-trans-5,7-Bis(benzyloxy)-2-[3,4,5-tris(benzyloxy)phenyl]chroman-3-ol ((-)-13c): To a solution of (-)-7c (318 mg, 0.41 mmol) in 1,2-dichloroethane (5 mL) was added triethyl orthoformate (0.12 mL), followed by PPTS (60 mg, 0.24 mmol). The mixture was stirred at rt for 20 min and then heated to 60 °C for about 8 h until TLC showed that the reaction had been completed. The reaction mixture was filtered through

a layer of silica gel and evaporated. The residue was redissolved in DME (4 mL) and MeOH (4 mL), K_2CO_3 (60 mg) was added, and the mixture was stirred at rt overnight. The solvent was evaporated, and the residue was purified by flash chromatography on silica gel (5% EtOAc/C₆H₆) to afford the desired product (233 mg, 75% yield) as a white solid. 1H NMR (CDCl₃, 300 MHz) δ 7.55-7.30 (m, 25 H), 6.78 (s, 2 H), 6.34 (d, J = 2.4 Hz, 1 H), 6.29 (d, J = 2.4 Hz, 1 H), 5.15 (s, 2 H), 5.14 (s, 2 H), 5.11 (s, 2 H), 5.10 (s, 2 H), 5.07 (s, 2 H), 5.04 (s, 2 H), 4.65 (d, J = 8.1 Hz, 1 H), 4.01 (ddd, J = 9.0, 8.1, 6.0 Hz, 1 H), 3.15 (dd, J = 16.5, 6.0 Hz, 1 H), 2.75 (dd, J = 16.5, 9.0 Hz, 1 H), 1.76 (br s, 2 H); ^{13}C NMR (CDCl₃, 75 MHz) δ 159.1, 158.0, 155.4, 153.3, 138.9, 138.0, 137.2, 137.1, 133.6, 129.0, 128.9, 128.8, 128.7, 128.5, 128.3, 128.2, 128.1, 128.0, 127.9. 127.8, 127.4, 106.9, 102.6, 94.6, 94.2, 82.1, 75.5, 71.4, 70.4, 70.2, 68.5, 27.9; [α]_D = -7.12 (c = 1.0, CHCl₃). By using the same procedure as described above, (+)-13c ([α]_D = + 7.21 (c = 1.0, CHCl₃)) and the racemate 13c were also prepared with identical NMR spectra as the (-)- isomer.

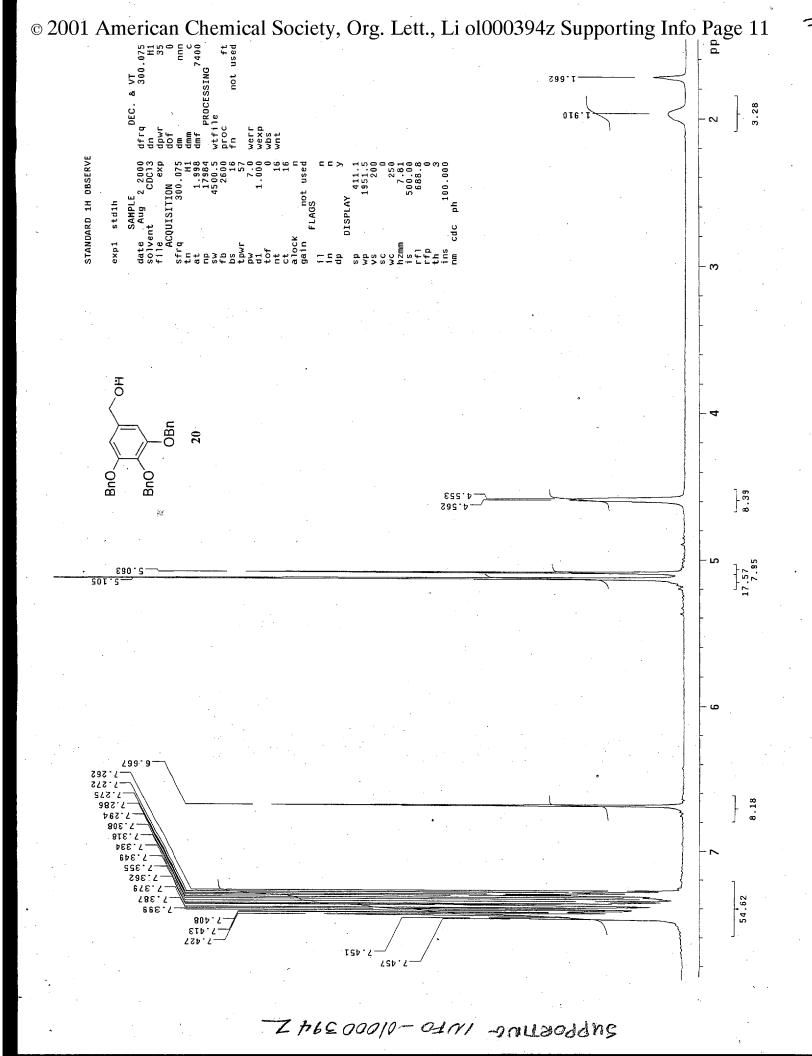
(-)-(2S,3S)-cis-5,7-Bis(bnzyloxy)-2-[3,4,5-tris(benzyloxy)phenyl]chroman-3-ol ((-)-15c): Dess-Martin reagent (150 mg) was added in one batch to a stirred solution of (-)-13c (180 mg, 0.24 mmol) in CH₂Cl₂ (5 mL) under an Ar atmosphere, and the mixture was stirred at rt for 2 h. Then saturated aqueous sodium bicarbonate solution (3 mL) and 10% aqueous Na₂S₂O₃ aqueous solution (3 mL) were added to quench the reaction. The resulting mixture was stirred until a clear two phase solution formed, the organic layer was separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was dissolved in C₆H₆ and was

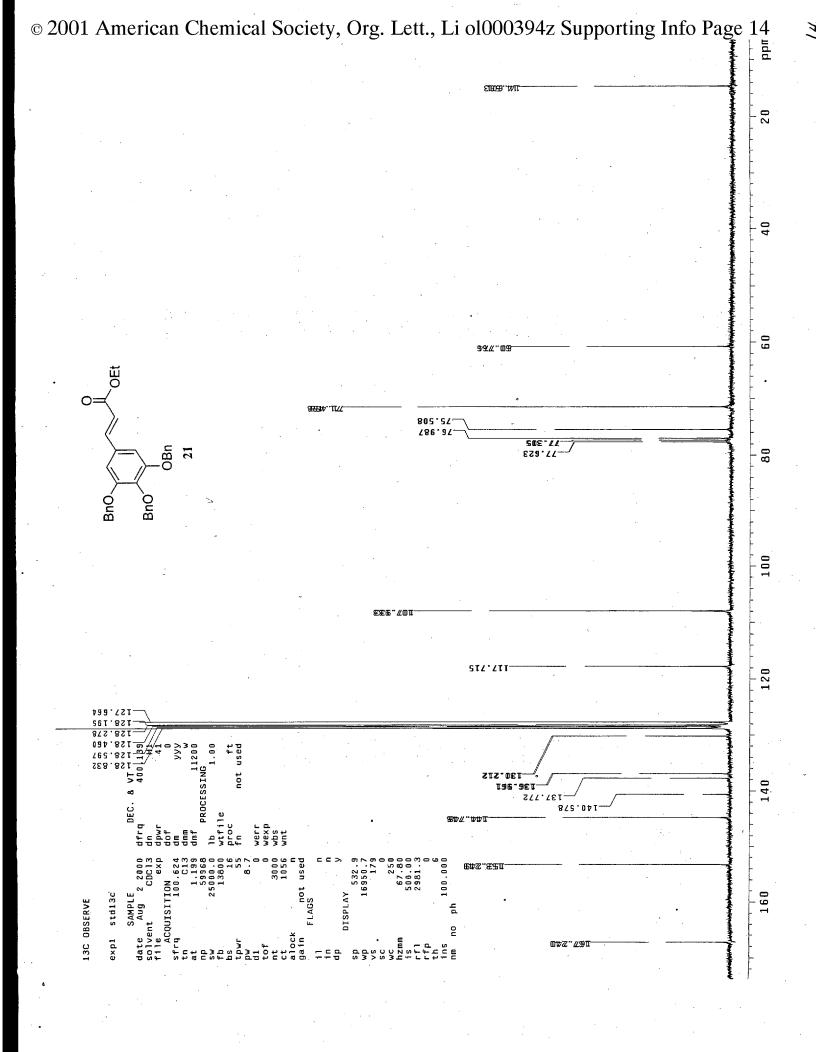
filtered through a layer of silica gel to remove the pink color. The filtrate was evaporated, the residue (about 180 mg) was dissolved in THF (3 mL), and the solution was cooled to -78 °C. Then L-selectride (0.33 mL, 1 M solution in THF, 0.33 mmol) was added dropwise under an Ar atmosphere. The resulting solution was stirred at -78 °C for 6 h and then at rt for 2 h. The reaction was quenched by the addition of saturated aqueous sodium bicarbonate solution (3 mL), and the resulting mixture was stirred at rt overnight. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried (Na₂SO₄) and evaporated. The residue was purified by flash chromatography on silica gel (5% EtOAc/C₆H₆) to afford the desired product (145 mg, 80% yield) as a white solid. ¹H NMR (CDCl₃, 400 MHz) δ 7.55-7.30 (m, 25 H), 6.86 (s, 2 H), 6.34 (d, J = 2.4 Hz, 1 H), 6.33 (d, J = 2.4 Hz, 1 H), 5.15 (s, 4 H), 5.11 (s, 2 H), 5.05 (s, 4 H), 4.92 (s, 1 H), 4.24 (s, 1 H), 3.05 (d, J = 17.2Hz, 1 H), 2.95 (dd, J = 17.2, 4.0 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 159.0, 158.6, 155.4, 153.3, 138.5, 138.1, 137.2, 137.1, 134.1, 128.9, 128.8, 128.7, 128.5, 128.3, 128.2, $128.1, 127.9, 127.5, 106.2, 101.2, 94.9, 94.4, 78.8, 75.5, 71.5, 70.4, 70.2, 66.7, 28.4; [<math>\alpha$]_D = -9.62 (c = 1.0, CHCl₃). By using the same procedure as described above, (+)-15c ([α]_D = +9.41 (c = 1.0, CHCl₃)) and racemate 15c were also prepared with identical NMR spectra as the (-)-isomer.

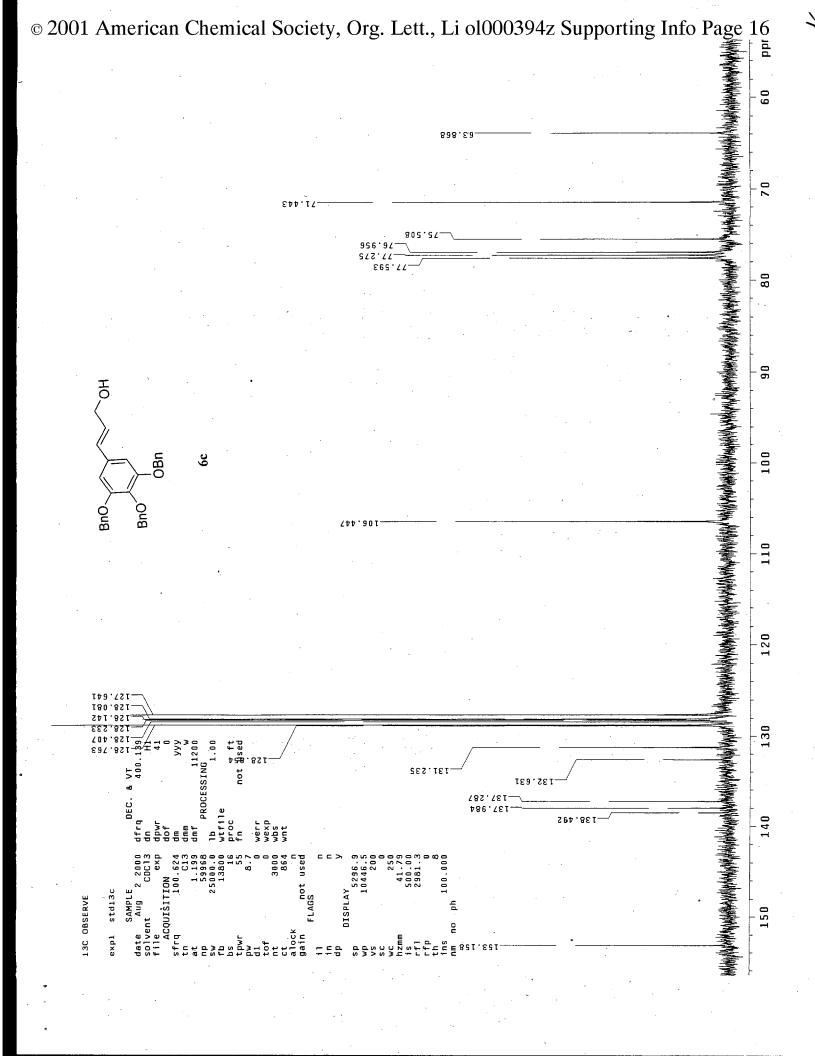
(-)-(2S,3S)-cis-5,7-Bis(benzyloxy)-2-[3,4,5-tris(benzyloxy)phenyl]chroman-3-yl 3,4,5-Tris(benzyloxy)benzoate ((-)-17c): A solution of 3,4,5-tris(benzyloxy)benzoic acid (170 mg, 0.39 mmol) was refluxed with (COCl)₂ (0.5 mL) in CH₂Cl₂ (6 mL) for 2 h. The excess of (COCl)₂ and the solvent were removed by distillation and the residue was dried under vacuum for 3 h and dissolved in CH₂Cl₂ (2 mL). This solution was added

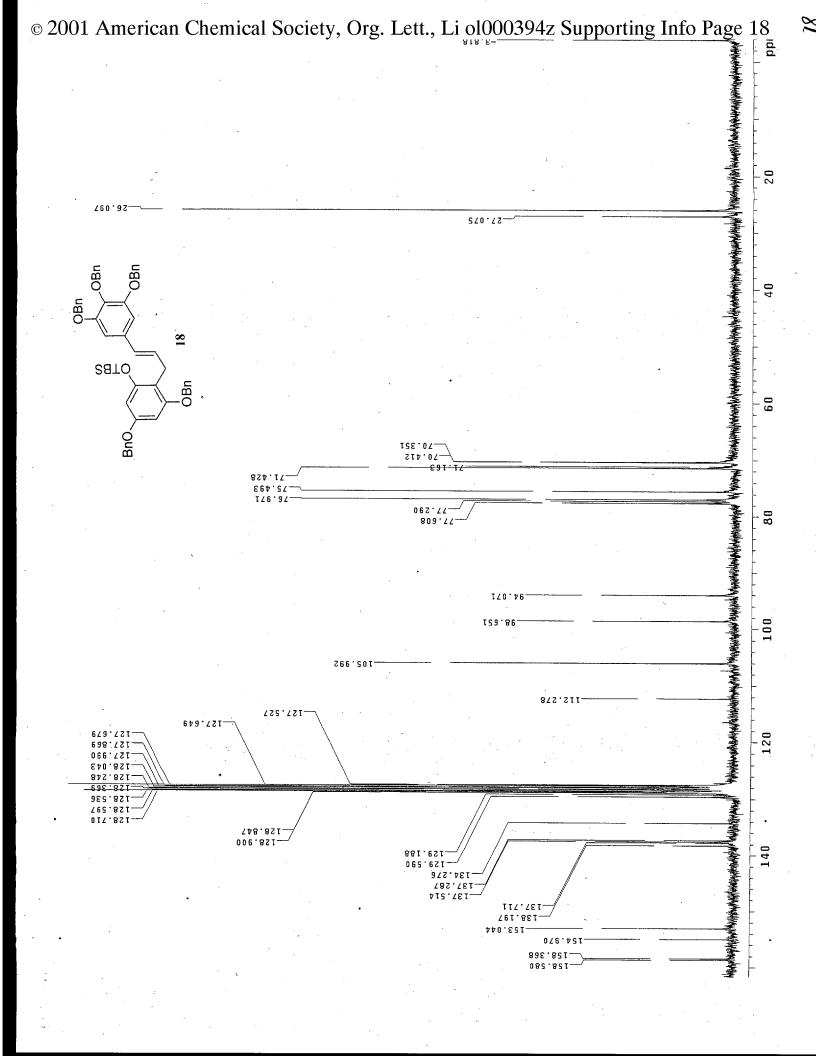
dropwise to a solution of (-)-15c (145 mg, 0.19 mmol) and DMAP (58 mg, 0.47 mmol) in dichloromethane (15 mL) at 0 °C. The mixture was stirred at rt overnight, then NaHCO₃/H₂O was added, the organic layer was separated, and the aqueous layer was extracted with ethyl acetate. The organic layers were combined, dried (Na₂SO₄) and evaporated. The residue was purified by flash chromatography on silica gel (EtOAc/C₆H₆) to afford the desired compound (188 mg, 83% yield). ¹H NMR (CDCl₃, 400 MHz) δ 7.5-7.20 (m, 40 H), 6.76 (s, 2 H), 6.44 (d, J = 2.4 Hz, 1 H), 6.38 (d, J = 2.4Hz, 1 H), 5.72-5.70 (m, 1 H), 5.22-4.90 (m, 13 H), 4.82 and 4.69 (AB q, J = 11.2 Hz, 4 H), 3.16 (dd, J = 17.6, 4.4 Hz, 1 H), 3.10 (dd, J = 17.6, 2.4 Hz, 1 H); ¹³C NMR (CDCl₃, 100 MHz) δ 165.1, 159.1, 158.3, 155.9, 153.1, 152.6, 142.9, 138.6, 138.0, 137.7, 137.1, 137.0, 136.9, 136.7, 133.5, 128.9 (2), 128.8, 128.7, 128.6 (2), 128.5 128.4, 128.3 (2), 128.2 (2), 128.1 (2), 128.0, 127.8 (2), 127.5, 125.2, 109.3, 106.9, 101.2, 94.8, 94.2, 78.2, 75.4, 75.3, 71.4, 71.3, 70.4, 70.2, 68.5, 26.5; $[\alpha]_D = -44.62$ (c = 1.0, CHCl₃). By using the same procedure as described above, (+)-17c ($[\alpha]_D = +45.12$ (c = 1.1, CHCl₃)) and the racemate 17c were also prepared with identical NMR spectra as the (-)-isomer.

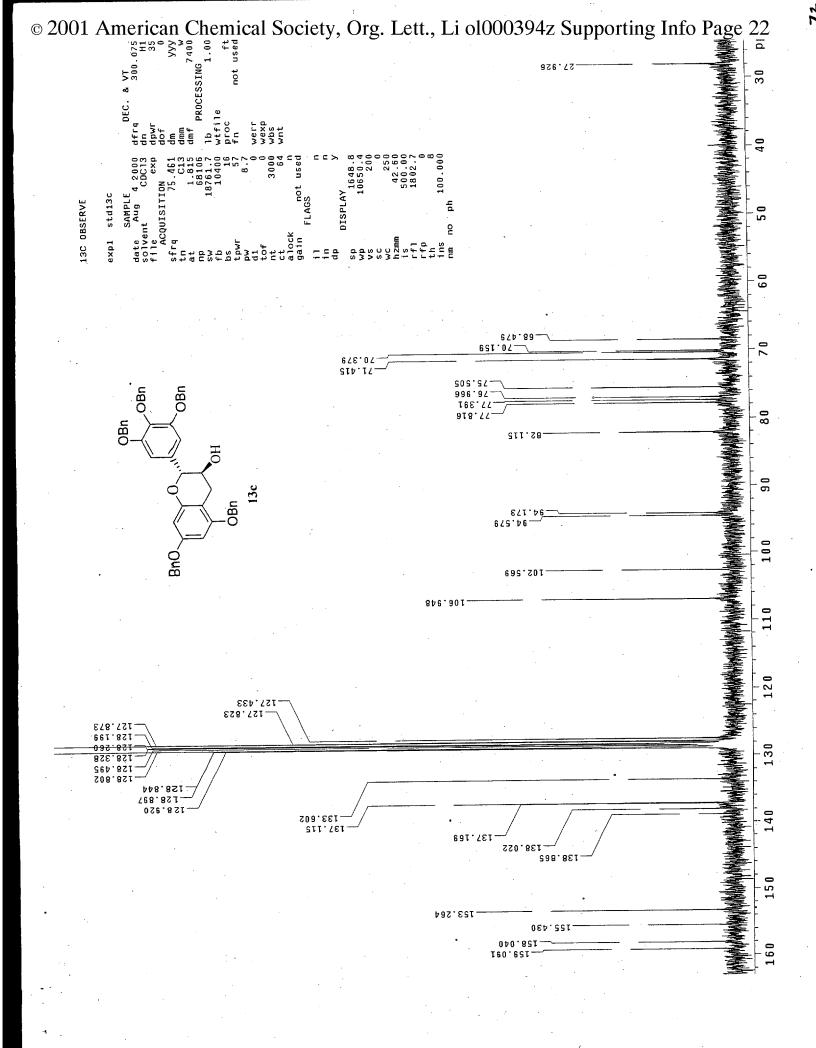
Preparation of (-)-EGCG ((-)-3b): Under an H₂ atmosphere, Pd(OH)₂ (50 mg, 20% on carbon) was added to a solution of (-)-17c (60 mg, 0.051 mmol) in a solvent mixture of THF/MeOH (1:1 v/v, 14 mL). The resulting mixture was stirred at rt until TLC showed that the reaction was completed (about 6 h). Then the reaction mixture was filtered through cotton to remove the catalyst. The filtrate was evaporated, and the residue was purified by flash chromatography on silica gel with EtOAc/CH₂Cl₂ (7:3) to afford the


desired compound (21 mg, 91% yield) as a white solid. 1 H NMR (acetone-d₆/D₂O (2:1), 400 MHz) δ 6.96 (s, 2 H), 6.60 (s, 2 H), 5.97 (d, J = 2.4 Hz, 1 H), 5.36 (d, J = 1.2 Hz, 1 H), 4.96 (s, 1 H), 2.94 (dd, J = 17.2, 4.4 Hz, 1 H), 3.10 (dd, J = 17.2, 1.6 Hz, 1 H); 13 C NMR (CDCl₃, 100 MHz) δ 166.4, 156.6, 156.0, 145.5, 145.2, 138.5, 132.4, 129.9, 120.5, 109.4, 106.1, 98.1, 95.8, 95.0, 77.4, 69.5, 25.9; [α]_D = -148.1 (c = 1.0, THF). The compound obtained as described above had completely identical NMR spectra as the commercially available sample (Sigma, [α]_D = -147.6 (c = 1.0, THF)). By using the same procedure as described above, (+)-EGCG ((+)-3b) ([α]_D = -148.2 (c = 1.0, THF)) and the racemic form of EGCG (**3b**) were also obtained.


¹ (a) Dess, D. B.; Martin, J. C. J. Org. Chem. **1983**, 48, 4155. (b) Ireland, R. E.; Liu, L. J. Org. Chem. **1993**, 58, 2899.


² Barbera, J.; Iglesias, R.; Serrano, J. L.; Sierra, T.; de la Fuente, M. R.; Palacios, B.; Perez-Jubindo, M. A.; Vazquez, J. T. *J. Am. Chem. Soc.* **1998**, *120*, 2908.


³ Cavallito, C. J.; Buck, J. S. J. Am. Chem. Soc. 1943, 65, 2140.


⁴ Chow, H.-F; Wang, Z.-Y; Lau, Y.-F. Tetrahedron 1998, 54, 13813.

